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Abstract 

The W(8) deconfinement temperature is studied on asymmetric lat- 

tices as a probe of scaling. For lattices with four sites in the temperature 

direction (PC = 5.7) we find precise agreement between the measured 

asymmetry dependence of the A-parameter and that predicted by one- 

loop perturbation theory. The agreement holds over a large range of 

asymmetry (.65 < E 5 1.1) and implies that violations of perturbative 

scaling above /3 = 5.7 are independent of asymmetry and therefore un- 

likely to be lattice artifacts. This provides evidence that the coupling 

range 5.7 sS< 6.2 is a regime of nonperturbative but universal scaling. 
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The problem of locating the onset of the scaling regime in lattice QCD is of 

fundamental importance since it is only in this regime that one can expect to ex- 

tract continuum physics from lattice calculations. Recent Monte Carlo studies ([I], 

[2]) of the deconfinement temperature in pure gauge SU(3) have shed important 

new light on this issue. These studies measure the critical coupling, pE, at which 

deconfinement occurs as a function of the number of sites, N,, in the time or tem- 

perature direction of the lattice. The requirement that the physical deconfinement 

temperature T. = (N*a)-’ be independent of the lattice spacing a in the scaling re- 

gion means that these calculations can also be regarded as a measurement of the 

bare coupling as a function of that spacing. For sufficiently weak coupling, this func- 

tional dependence should be determined by the universal perturbative beta function 

[3]. The results of [l] and [2] strongly suggest that such perturbative scaling sets in 

for p > 6.2 (corresponding to Nf 2 12). 

For p < 6.2 things are less clear. Certainly perturbative scaling no longer holds 

[4]. (Indeed the length scale determined by the deconfinement transition deviates 

by as much as 50% from the perturbation theory prediction.) The question which 

then arises is: are the perturbative scaling violations observed in this regime still 

universal? If nonperturbative but universal scaling is in effect then, for example, 

a lattice calculation of a dimensionless mass ratio at S = 5.7 will give the same 

value as a similar calculation at p = 6.2. Thus it would be possible to probe 

continuum physics at relatively small values of p resulting in enormous savings in 

the computer time required to do any given lattice calculation. On the other hand 

if the nonperturbative behaviour observed in this regime is due to lattice artifacts 

then there is no reason to expect universal scaling, and realistic simulations must 

be performed at pz6.2. 

The Monte Carlo calculations described in this paper are aimed at investigating 

perturbative scaling and its violation in more detail by introducing asymmetry 

on the lattice and studying the deconfinement temperature as a function of that 

asymmetry. More specifically we choose to work on lattices with spacing a, = (a 

along the z axis and spacing ov = a. = at = a along the y, z, and t axes. In the 

universal scaling regime, different choices for the asymmetry E represent different 
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regularization schemes, the effects of which can be summarized by an asymmetry- 

dependent A-parameter. Thus if nonperturbative but universal scaling holds for 

5.7 < @ < 6.2, then the perturbative scaling violations observed in [4] should be 

independent of the asymmetry after A has been appropriately resealed. 

The pure gauge SU(N) lattice action for a lattice with asymmetry along the z 

axis is given by ([5]) 

S(U) = c p”‘~~~~” (l- $ReTr(U,,(z))) 
%B<Y 

where 

and 

a, = Ea 

a Y = a, = at = a (3) 

U&) = U(z,z+~)U(z+Clrz+~+u)U(2+~+u,5+u)U(Z+u,2) (4) 

The matrices U(z,zf/.~) introduced here are, as usual, N x N unitary matrices 

defined on the links of the lattice. 

In order to relate the results we have obtained on asymmetric lattices to those 

on a symmetric lattice we first need to understand how the appropriate A param- 

eters are related. The one-loop perturbative calculation of the A-parameter on an 

asymmetric lattice, A(E), relative to that on a symmetric lattice A(l), has been 

carried out by Karsch [5]. Following the same reasoning used in the symmetric 

lattice studies of deconfinement, this result can be reinterpreted as a perturbative 

prediction for the change Ap in the coupling R as the asymmetry < and the cutoff 

scale a change 

AP(E,a) =@(&a) -P(E=Lao) (5) 

where as is a reference cutoff scale introduced to regulate the infrared divergences 

in the bare coupling. 

Karsch’s calculation of the A-parameter for an asymmetric lattice employed 

the procedure developed by Dashen and Gross [6] for the symmetric lattice. In 
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this procedure, the cutoff dependence of the bare coupling constant is obtained by 

calculating the one-loop effective action in a weak background field. Karsh presents 

his results in terms of three dimensional momentum integrals. We have found it 

convenient to reexpress these momentum integrals ss one dimensional integrals over 

Bessel functions. For asymmetry along the z-axis we find 

where 

AhP(E, 4 = 4N (cs,(L 4 + cstz(E, ~1) (61 

d&a) = /o-da hw(L~,4 - MLao, 4) (7) 

The integrands h,, appearing here receive the following contributions from the 

terms S,,, S,, Ss, and Sr in the one loop effective action derived in reference [5] 

(see also [S] and [7]) 

hpv(L% a) = (~,~,%~l)-1 (I$;) + f&E) + hlfj) + hE)) 

$)(E, a, 4 = +zpp;q 

q?(L a, 4 = +ro(l?;+~~)(z~+I,‘)~~~~ 

q!‘(E, a, 4 = +;a $1; (1; - 1;) + $1; (IO” - 1;) 1;1, 
( ) 

htT,)(L.,a) = + ‘N;, I) (a;Io” (1; - I;) + ~$1; (IO” - If)) I;I; (8) 

The indices o and r introduced here refer to the two directions orthogonal to p and 

V. Note also that the subtraction at the reference cutoff scale ae regulates infrared 

divergences present in the the terms J h,$,) and J h,$. 

The one-loop formula for Ap( E, o) has the property that it can be written as the 

sum of two terms, one depending only on the the cutoff scale a and one depending 

only on the asymmetry 6, 

AP(S,a) = Bb) + C(E) (10) 
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This may be seen by writing Eqn(7) as 

e pu = / ~+,“(L 4 - hwo, Qdl + / w$“(E, 4 - bA”(L 41 (11) 

The first integral is obviously independent of [. The fact that the second integral 

is independent of a follows from a change of variables (Y + u20. The contribution of 

the first term to AD is just the familiar one-loop beta-function result, 

B(a) = %log(a/m) 

11N 
b. = - 

48x2 

We have evaluated C(t) by numerical integration for comparison with our Monte 

Carlo data. Our results for the one loop calculation are in agreement with those of 

Karsch [5]. 

The Monte Carlo calculations for PC(E) were carried out on lattices of two and 

four sites in the temperature direction (N, = 2,4). For the case E = 1 we chose the 

number of sites in the spatial directions to be ZN,. For E # 1 the number of sites 

in the asymmetry direction was adjusted to keep the physical size of the lattice 

approximately constant (N. = ZN,/[) and thus minimize the dependence of our 

results on finite size effects. 

Our procedure for determining the value of PC at each asymmetry consisted 

of first locating the deconfinement transition approximately by inspection of the 

Polyakov line variable P(S), 

P(S) = Tr [V(Z,z’+?) . . . V(z’+(Nt-- 1)&Z)] (13) 

This w&s followed by two or three independent Monte Carlo runs of between 10 and 

20 thousand sweeps each at values of p spaced by increments of 0.01 and chosen 

to bracket the critical value. For example, the value PC(l) = 5.676 f 0.003 for a 

lattice with Nt = 4 (Table 2) was obtained from two independent runs at 5.67 and 

5.68. The value of 1 (P) ] was measured after each sweep and the configuration was 

classified as confined or deconfined. We chose ] (P) I> 0.7 for Nt = 2 and ] (P) I> 0.25 

for Nt = 4 as our definition of a deconfined configuration. These values were chosen 

to be approximately half of the value which ] (P) 1 a ains just above p.. (Reasonable tt 
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variations of this definition result in small and fairly uniform changes in p.( [) and 

have a negligible effect on AD.) The final result for & was obtained by linear 

interpolation to the point where exactly half of the configurations are confined. 

The error bars we quote on our data are purely statistical and were determined by 

a “jackknife” procedure [8] in which small subsets of data are eliminated and the 

remaining data reanalyzed. A more detailed discussion of our numerical analysis 

will be presented elsewhere. 

The results of the Monte Carlo calculations for lattices of two sites and four 

sites in the temperature direction (Nt = 2 and 4) are plotted in Figure 1 and Fig- 

ure 2. Also plotted in these figures are the one-loop perturbative predictions for 

BE(e). Note that, once the symmetric lattice result be(l) is given, the perturbative 

calculation for PC(E) (=Pc(l)+Ap(c)) contains no adjustable parameters. For com- 

pleteness we have listed the numbers used to generate these plots in Table 1 and 

Table 2. For the case Nt = 2 (Figure 1) the Monte Carlo results for the asymmetry 

dependence of pe are in complete disagreement with the perturbative result. This is 

to be expected, since the values of PC here (PO = 5.1) are well into the strong coupling 

region. For Nt = 4 (Figure 2), the relevant values of ,& are around 5.7. From the 

results of reference [4] we know that this is still in the region where there are large 

violations of perturbative scaling. In view of this, the Monte Carlo results for PC, 

shown in Figure 2, are both remarkable and surprising. In the region 0.65 < [ < 1.1, 

the value of PE follows the perturbative curve with great precision. Thus, after A 

has been resealed to take account of the change in regularization as [ changes we 

find that Z’, is independent of [ in this region. To illustrate this we have plotted the 

dependence of T, on E in Figure 3. Note that the region of perturbative behaviour 

is clearly delineated at each end by sharp changes of slope which appear to be either 

transitions or rapid crossovers. 

Before considering possible explanations for our data let us first reiterate the 

precise connection between our results and those of reference [4]. In that reference, 

the value of pE was measured on symmetric lattices with varying values of Nt. 

Since Nta is held lixed at (Te)-l, reference [4] gives the change of the bare coupling 

constant induced by a change of the cutoff scale, a-+ Xa. In our calculations, we have 
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held the value of Nt fixed and varied the asymmetry in one of the spatial directions. 

Thus, we are varing the lattice spacing in only one direction instead of all four. 

In terms of the quantity Ap(e, a), our calculations study the c-dependence while 

those of [4] study the a dependence. Thus, although the perturbative agreement we 

observe is surprising, it is not inconsistent with previous results. 

The striking agreement between Monte Carlo data and perturbation theory for 

the E dependence of PC exhibited in Figure 2 and Table 2, taken together with 

the relatively large violations of perturbative scaling in the a dependence of PC 

[4] places strong constraints on the nature of asymptotic scaling violations in the 

region 5.7 - 6.2. One possibility is that the agreement with perturbation theory 

is accidental and does not indicate true perturbative behavior. (This is the case, 

for example, for the approximate, but accidental, equality of the values of T,/A for 

symmetric lattices with Nt = 2 and 4.) Baaed on the quality of the data and on the 

range of agreement with perturbation theory, we consider this possibility unlikely. 

We therefore expect similar agreement on lattices with six, eight, and ten sites in 

the time direction. (We are currently proceeding with the Nt = 6 Monte Carlo 

study) 

If we assume that the agreement with perturbation theory is not spurious, then 

we conclude that the full function A@ has the same form as the one-loop result 

(Eqn.(lO)), i.e. it must be the sum of a term which depends only on a and a term 

which depends only on [. Moreover, in the region 5.7 5 p < 6.2 and the range of 

asymmetries .65 < [ < 1.1, the violations of perturbative scaling are confined to 

the first term B(a) only, while the 5 dependence is given quite precisely by the 

one-loop perturbative result. This may be more understandable if we observe that 

the separation of the one-loop result into an u-dependent term and a &dependent 

term corresponds to a separation of the momentum space Feynman integrals into 

contributions from long wavelength (k < l/a) and short wavelength (k - l/a) 

respectively. The term B(a) in Eqn.(lO) is universal and E-independent because it 

comes from the long wavelength components which are not sensitive to the details 
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of the lattice cutoff. The integrals which contribute to B(a) have the form 

-2 

/ 
-+I+ d4k N(k) (&I)- 2 sin2(krEa) + aa ~sin’(kia) 04) 

i=2 

where N(k) approaches a [ independent constant as 1 k I+ 0. If the region of 

integration is seperated into I k I< s/u and I k I> c/a with s < 1 then we find that 

only the first of these contributes to B(a). Th us our Monte Carlo result that only 

B(a) shows nonperturbative effects strongly suggests that the observed violation of 

perturbative scaling in the region 5.7 5 p < 6.2 is not a lattice artifact, but rather 

an indication of nonperturbative continuum physics in this range of coupling. 
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Tables 

z 

/ 
asymmetry 

0.60 5.186 5.243 f 0.002 

0.70 5.152 5.217 zk 0.003 

0.80 5.121 5.185 f 0.002 

0.90 5.092 5.142 f 0.002 

1.00 5.069 ‘5!069 + 0.004 

1.10 5.051 4.994 f 0.003 

1.20 5.038 4.901 f 0.004 

Critic 

Theory 
- Coupling DE 

Monte Carlo 

1. The perturbation theory predictions and the Monte Carlo data for the critical 

coupling for Nt = 2. The theory value at ( = 1 is input. 
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z Critical Coupling PC 

asymmetry Theory Monte Carlo 

0.40 5.852 5.781 f 0.002 
0.50 5.826 5.778 f 0.003 
0.60 5.794 5.777f0.003 
0.667 5.771 5.773 f 0.002 
0.70 5.760 5.759 f 0.005 
0.75 5.744 5.742 f 0.002 
0.80 5.729 5.725 f 0.002 
0.85 5.714 5.715 f 0.003 
0.90 5.701 5.703 Iko.002 
0.95 5.688 5.691f 0.004 
1.00 5.677 5.676 f 0.003 
1.05 5.667 5.669 f 0.002 
1.10 5.659 5.658 AI 0.002 
1.15 5.652 5.665 f0.003 
1.20 5.646 5.668 f 0.002 
1.25 5.641 5.675 f 0.003 
1.50 5.638 5.757 f 0.006 

2. The perturbation theory predictions and the Monte Carlo data for the critical 

coupling for Nt = 4. 
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Figures 

-ll- 

1. The critical coupling ,& as a function of asymmetry for Nt = 2. The solid 

line represents the one loop perturbative result. The data points represent 

the Monte Carlo results. 

2. The critical coupling & as a function of asymmetry for Nt = 4. The solid 

line represents the one loop perturbative result. The data points represent 

the Monte Carlo results. 

3. Tc/A,, ss a function of asymmetry for Nt = 4. ASrm is the same scale as used 

in Figure 3 of reference [l]. 
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Figure 2 
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